How does bias correction of regional climate model precipitation affect modelled runoff?

نویسندگان

  • J. Teng
  • N. J. Potter
  • F. H. S. Chiew
  • L. Zhang
  • B. Wang
  • J. Vaze
  • J. P. Evans
چکیده

Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the differences between the methods are small in the modelling experiments here (and as reported in the literature), mainly due to the substantial corrections required and inconsistent errors over time (non-stationarity). The errors in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Regional Climate Model Output for Hydrologic Simulations

Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River a...

متن کامل

A flood risk projection for Soleimantangeh Dam against future climate change

A sensitivity analysis of the flood safety of Solaimantangeh dam using a regional climate change simulation is presented. Based on the output of the CCSM (Community Climate Change System Model) general circulation model, the NIRCM (North of Iran Regional Climate Model) computes regional scale output with 50 km spatial resolution and 21 vertical layers. Using the SRES (Special Report Emission Sc...

متن کامل

Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand

Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma...

متن کامل

Effects of climate model radiation, humidity and wind estimates on hydrological simulations

Due to biases in the output of climate models, a bias correction is often needed to make the output suitable for use in hydrological simulations. In most cases only the temperature and precipitation values are bias corrected. However, often there are also biases in other variables such as radiation, humidity and wind speed. In this study we tested to what extent it is also needed to bias correc...

متن کامل

A comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data

This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015